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Abstract. High-temperature series for the free energy of the q-component Potts model in 
the presence of arbitrary external fields are generated to eighth order for five lattices and 
subsequently analysed. In two dimensions the higher critical exponents y, y3 are estimated 
to be 1.42, 3.60 and 1.20, 2.62 for q = 3 and 4 respectively. Evidence for the possible diver- 
gence of the order parameter fluctuation at the first-order transition point for q > 5 is 
presented. In three dimensions the question of the order of the transition is directly investi- 
gated in the temperature-order parameter plane and analysis of the series indicates that the 
transition is of first order for q 2 3. 

1. Introduction 

Recently there has been considerable interest in the statistics of the Potts model (Potts 
1952). For this model a spin at the ith lattice site ci can take on the q values 1,2,. . . , q. 
The interaction energy between nearest-neighbour pairs is - J  if they are in the same 
state and zero otherwise. 

Apart from its purely theoretical interest in statistical mechanical problems, the 
Potts model is now emerging as a serious candidate to describe various physical situ- 
ations. Recently Alexander and Yuval (1974) discussed the relevance of this model to 
a situation where the order parameter is a second-rank tensor, such as in the isotropic- 
to-nematic liquid crystal phase transition or plastic transitions in molecular crystals. 
Priest (1971) also considered this Potts interaction as a quantized version of the rotation- 
ally invariant potential in the lattice model of nematic liquid crystals. 

In two dimensions Potts (1952) used the transfer matrix approach to find the inversion 
transformation for a square lattice and thus was able to locate the transition temperatures 
for all q. Kihara et al(1954) proposed the same model independently in connection with 
the solid-liquid transition and found the Onsager-type dual transformation by a topo- 
logical approach. Mittag and Stephen (1971) also studied the dual transformation on the 
square lattice. More recently Kim and Joseph (1974a) located the exact transition 
temperatures on the triangular and honeycomb lattices for all q using a generalized star- 
triangle transformation by introducing a three-spin interaction. 

An important result was recently obtained by Baxter (1973) who has shown that on 
a square lattice this model has a non-vanishing latent heat only for q > 4. This result 
strongly implies that other first derivatives of the free energy are also continuous at the 
transition for q < 4. A continuous transition for 4 < 4, in any sense, is contrary to the 
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prediction of the mean field approximation (MFA). The MFA and equivalent phenomeno- 
logical arguments predict that the transition is of first order (discontinuous) for 4 > 2 
in all dimensions. In fact the validity of the MFA for q = 3 in two dimensions had pre- 
viously been questioned by a number of workers on the basis of series expansion work 
on the square lattice (Straley and Fisher 1973, Kihara er al 1954). On the other hand 
the c-expansion work of Amit and Shcherbakov (1974) in the four-dimensional limit 
supported the idea of a first-order transition for q = 3. 

Consequently a question of considerable interest is whether in three dimensions the 
Potts model exhibits a first-order phase transition (in zero fields), as the MFA predicts, 
or a continuous transition for lower q’s  as in two dimensions. There are a number of 
previous studies relevant to this question for q = 3. One is that of Golner (1973) who 
studied a continuum generalization of the 4 = 3 Potts model by means of Wilson’s 
q = 0 approximate renormalization group recursion formula. Another is that of 
Ditzian and Oitmaa (1974) in which the spin 1 Ising Hamiltonian with biquadratic 
interactions was studied by means of a six-term high-temperature susceptibility series 
for the face-centred cubic lattice for a range of biquadratic interactions which included 
the Potts model. Lastly, low- and high-temperature series of various thermodynamic 
quantities were constructed and analysed by Straley (1974) for the simple cubic lattice 
and by Enting (1974) for the face-centred cubic lattice. The authors of the first two 
works preferred to interpret their results as evidence for a first-order transition while 
the last two authors interpreted their own results as evidence for a second-order transi- 
tion. None of these works, however, is by any means conclusive in its results. 

In our work we have approached this problem from a different point of view. Unlike 
conventional approaches, derivatives of the free energy as a function of an order para- 
meter m (not a field) and the temperature are investigated directly in the m-T plane. 
The criterion used to distinguish between a continuous and a discontinuous transition 
is that in the latter case the susceptibility should diverge for a finite value of m at a 
temperature higher than the transition temperature. Detailed arguments concerning 
this point are given in Q 4. Analysis of our high-temperature series (9 2) in this context 
gives good evidence for a discontinuous transition in m for 4 > 3 for all three-dimensional 
lattices considered. The high-temperature series obtained are also utilised to estimate 
the critical point exponents associated with higher-order critical points in two dimen- 
sions, where the transition is known to be continuous. We also present evidence of 
possible diverging fluctuations at the first-order transition (8 3). In Q 5 scaling relations 
and the relevance of the Potts model to liquid crystals are discussed. 

2. High-temperature series expansion of the free energy in a field 

The Hamiltonian of the system may be written as 

N 

where K = BJ and [(ai) = cr, when ai = k .  Here the ( k  are symmetry breaking fields. 
If we let nk be the fraction of spins in the kth state, it is obvious that 
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and [ k  becomes the field conjugate to the density (nk), ( ) denoting a thermal average. 
Because of the condition 

one of the [ k  is irrelevant. 
For specific zero field quantities, such as the susceptibility or free energy at [k = 0 

for all k, a formalism for series generation has been previously developed by several 
authors (Mittag and Stephen 1971, Kihara er a1 1954, Alexander and Yuval 1974). For 
the purpose of this study, however, it is necessary to include the arbitrary fields exactly. 

Using the relation exp(KG,,,) = 1 + [exp(K) - 1]GUut, the partition function can be 
written as 

(4) 

where U 
variable U. 

exp(K) - 1. Thus we can generate power series for the free energy f in the 

At this stage it is convenient to define a set of functions : 

Then all of the field and q dependences in the final results will be explicitly contained 
in the G, functions. In the expansion of equation (4) the first term is & and each 1 line 
graph which can be drawn on a lattice contributes to the lth power in U with a factor 
determined by the topology of the graph. If we factor out &, an m-vertices connected 
graph gives a factor G, so that each coefficient of U' will be a linear combination of terms 
of the form GYGG",' . . . . Thus we see that the free energy takes the form, after going to 
the thermodynamic limit, 

Z -Pf= lng,+-G,u+ u2+ . . .  
2 (7) 

where z is the lattice coordination number. 
In our calculations we used the finite cluster method (Domb 1960), exploiting the 

data compilation of Baker et a1 (1967). The entire calculation was computerized and 
careful internal checking was performed. Overall checking was done by reducing the 
results to those known for the Ising model. In this way we obtained the free energy 
series through U" for the plane square (so), triangular (TR), simple cubic (sc), body- 
centred cubic (BCC) and face-centred cubic (FCC) lattices. The numbers of different 
terms for the lth power in U for FCC for example were 1,2,4,7, 12,21,32,50 for 1 = 1,. . . , 8  
respectively. 

For our purpose it is sufficient to consider the situation where c2 = C 3  = . . , = 0. 
Then the Gn functions can be represented as power series of order n in a field variable T 
defined by 



894 D Kim and R I Joseph 

where r E 4-l,ie 

The order parameters of interest are the particle densities ( n k ) .  The ( n k )  are not 
independent and it is sufficient to consider only (nl) (Kim and Joseph 1974b). Hence 
we define a generalized 'magnetization' : 

m = r- ' (q(n1)-1)  = r-'[qa(-pf)/dS1-l] (10) 

so that as cl + O', c2 = c3 = . . . = 0, the spontaneous ordering varies from zero at 
high temperatures to 1 at T = 0. The magnetization series for each 4 hence takes the 
form : 

m 2 n  

n = O  k = O  
m = t 1 U" 1 an,ktk = 41(u)t+42(u)t2+ 

where we have changed to a new high-temperature variable, 

exp(K)-1 - U 

exp(K)+r u + q '  
U =  -- 

In order to investigate the phase boundary, it is necessary to invert the series equation 
(1 1) to the form : 

m 

t = m U"$&) 
n = O  

where 
2 n  

We have confirmed that our results reduce to those of Gaunt and Baker (1970) for 
the 4 = 2 king case. Since the coefficients in either equation (11) or equation (14) are 
obtained for each q and for each lattice from a free energy result of the form equation (7), 
we present here only those series used in 8 3 for the two-dimensional lattices (appendixes 
A.l and A.2), and (appendix A.3) the t,h,,(m) polynomial for the 4 = 3 FCC lattice used 
in 64. All other series are available on request. 

3. Analysis of series in two dimensions 

As mentioned in the introduction, Baxter (1973) has rigorously shown that the Potts 
model in zero field undergoes a continuous transition for 4 = 3 and 4 on the square 
lattice in the sense that af/aT is continuous at the transition temperature. We shall 
assume that the order of the transition does not depend on which density (first derivative 
of the free energy with respect to a field) we are looking at ; that is, we will assume that 
the continuity or discontinuity of af /aTis the same as that of af This is a reasonable 
assumption except for an accidental choice of the direction of the fields. Also, we shall 
assume that the nature of the transition is insensitive to the lattice structure in a given 
dimension, so that the spontaneous magnetization is also continuous for the triangular 
lattice for 4 < 4 and discontinuous for 4 > 4. 
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Because of the basic symmetry with respect to the fields (Kim and Joseph 1974b), a 
continuous transition in zero fields implies that the transition points must be critical 
points of higher order in the sense of Chang et aI (1973). For 4 = 3 three lines of critical 
points meet at the transition; hence it is the tricritical point (Straley and Fisher 1973). 
For q = 4, by the same reasoning as in Straley and Fisher (1973), the transition point is a 
critical point of order four. For the q = 2 Ising case the free energy is an even function 
of the magnetic field. Hence the high-temperature gap exponents AI are defined only 
for I even. But for the Potts model (4 2 3) there is no longer such a symmetry and we 
can accordingly define a ‘first gap exponent’, A l  = y 3  - y ,  as 

a2m/ay: = x 3  - ( U ~ - U ) - Y - ~ I  - ( U ( ) - u ) - y 3 ,  (15) 

associated with the critical point of higher order. 
In terms of the 4i(u) polynomials of equation (11) we see that 

x = am/ayl = q-’(l-z)(l+rt)am/a~I,=, = (16) 

x 3  = 4-2[(q-2)4i  +2921. (17) 

and similarly, 

The series for x and x 3  derived in this way are tabulated in appendixes A.l  and A.2 
respectively for the TR and SQ lattices together with those for higher 4’s which are also 
used in this section. 

These series were studied by standard methods of series analysis. For 4 = 3 and 4 
the agreement of the poles of the Pade approximants (PA) to d(ln x)/du (D lg x) and 
d(ln z3)/du (D lg x3) with the exactly known transition temperatures were good enough 
to support the power law behaviour assumption. y and y 3  were estimated by constructing 
Pade approximants to (uo - U )  d(ln X)/du and (uo - U )  d(ln x3)/du respectively for both the 
SQ and TR lattices. The estimated exponents are 

= 3 :  = 1.42+0*05 

y 3  = 3*00+0-1, 

and 

= 4: y = 1*20+0*05 

7 3  = 2.62+0*1 

for both lattices. The confidence limits are determined by ratio methods and are con- 
sidered to be conservative. 

For q > 4 we have first-order transitions. In the mean field approximation the 
first-order transition occurs mathematically by choosing the lowest energy solution to 
the equation of state. This results in a finite susceptibility at the transition. Therefore, 
the high- and low-temperature susceptibilities in the MFA diverge at a temperature far 
beyond the transition temperature. On the high-temperature side, in the MFA we have 

for 

ZJ 2(q - 1) h(q - 1) - 
k,T ‘ 9 - 2  

, 
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ie x - (T-  T?)-l, while the transition occurs at  a temperature To which is larger than 
T:. For example, with z = 6,  uo = 0.1456 and U: = 0.2065 for 4 = 5 and uo = 0.1374 
and U? = 0.2226 for 4 = 6,  in terms of the variable U. 

Whether or not this feature will persist in an 'exact' calculation is an interesting 
question which needs further study. If we assume that x - (U: -U)-' etc we can estimate 
0: by constructing Pade approximants to the logarithmic derivatives of the x series. 
In table 1 we list the location of the physical poles for the six most significant approxi- 
mants for 4 = 5 , 6  for x and also for the x 3  series for the square lattice. In table 2 we 
list those for the triangular lattice where we have also included the [2, M] Pade approxi- 
mants as well as results for the q = 7 and 8 x series. The agreement of the poles and the 
exact transition temperatures uo are surprisingly good for all cases shown, even for 
higher q. The poles of x seem to give slightly higher estimates for u o .  This may be due 
to the effect of the mean-field-like trend of the first few terms. The reasonable regularity 
of the distribution of the poles supports the power law assumption. Hence we can 

Table 1. Physical poles of the PA to D Ig x and D Ig x 3  for q = $ 6  for the SQ lattice. 

4 = 5 (U, = 0.3090) 
Approximant x X 3  

[5,21 0.3236 0.3051 
[4,31 0.3104 0.3090 
~ 3 ~ 4 1  0.3104 0.3059 
E49 21 0.3396 0.3099 
[3,31 0.3102 0,3098 
[33 21 0.2945 0.3088 

4 = 6 (U, = 0.2899) 
X X 3  

0.3055 0.2738 
0.2923 0.29 16 
0.2923 0.2870 
no pole 0.2972 
0.2921 0.2953 
0.2762 0.2885 

Table 2. Physical poles of the PA to D Ig x for q = 5,6,7,8 and to D Ig x 3  for q = 5,6 for 
the TR lattice. An asterisk denotes a smaller positive real pole with extremely small residue 
which is ignored. 

0.19 10' 
0.1837' 
0.1820 
0.1804 
0.1821 
0.1825 
0.1 824 
0.1833 
0.1 899 

0.1636 
0.1806 
0.1 736 
0.1 802 
0.1815 
0.1813 
0,1810 
0.1837 
01819 

0.1725' 
0.1692. 
0.1 679 
0.1667 
0.1691 
0.1691 
0.1685 
0.1692 
0.1674 

0.1687* 
0.1688' 
0.1682' 
0.1656 
0.1683 
0.1678 
0.1678 
0.1684 
0.1681 

q = 7 (U, = 0,1545) 4 = 8 (U, = 0.1449) 

X X 

0.1602' 0.1505* 
0.1579 0.1488 
0.1567 0.1476 
0.1585 0.1497 
0.1587 0.1504 
0.1578 0.1485 
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interpret these results as evidence supporting the conjecture that the singularities of both 
the x and x 3  series are both exactly at uo,  even when the system undergoes a first-order 
transition. It then follows that the power law divergence of any thermodynamic quanti- 
ties at uo by itselfcannot be used as a criterion for the existence of a continuous transition, 
and that the metastable state which the MFA predicts cannot exist, at least through oo. 

4. Analysis of series in three dimensions 

In this section we utilize high-temperature series of the type given by equation (1 3) to 
investigate the nature of the phase transition in three dimensions. The method we have 
adopted in our work is to look directly at the phase space. For this purpose we consider 
a subspace of the field space, 2 0 and Ci = 0 (i 2 2), and for simplicity consider q = 3. 
For higher q the following arguments are easily generalized. 

Straley and Fisher (1973) have sketched out the field space phase diagram for both 
the case of a continuous and of a discontinuous transition in zero field (see their figures 
2 and 9). In the former case, for 7 > 0, r2 = l 3  = 0, there are no singularities in the 
free energyf(r, v )  for any U, so that a high-temperature expansion of the form given by 
equation (13) will be valid up to the r = 0' contour, which forms the phase boundary 
for m 2 0. For the discontinuous case r = 0' forms only a part of the phase boundary 
(ie for v > vo  in figure 1). The cross section of the first-order coexistence surface ( w l  of 

m 

mo 

mc 

0 

Figure 1. Schematic of relation of phase boundary to zero-field magnetization u,(m) for 
the case of a first-order transition in the Potts model. The point (mc, U,) is a critical point 
and m, is the zero-field magnetization jump at the transition temperature U,, 

Straley and Fisher 1973) with the c2 = c3 = 0 plane in the field space will, in the m-u 
plane, give the rest of the phase boundary as shown in figure 1. In particular, at the 
point (m,, U,) the 'susceptibility' d2( - /3")/d(: diverges strongly in the sense of Griffiths 
and Wheeler (1970), since the Cl (ie r )  direction is the strong direction on the correspond- 
ing point in the field space. Therefore, if we consider the series 

dr 
- = 1 C,,(m)v" 
dm n = O  

for which only a finite number of terms are known, and if we approximate the solution 
to the equation dr/dm = 0 for fixed m by constructing appropriate PA to the series, we 
should then reasonably expect to see the effect of the critical point (m,, U,) for some 
finite m, if there is a first-order transition. 
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Since there is some controversy as to whether the ‘spinodal curve’ on which the 
analytic continuation of dz/dm vanishes really exists (Gaunt and Baker 1970 and 
references therein), dz/dm might vanish only at the true critical point. However, any 
finite length series will obviously tend to give a more-or-less definite spinodal curve 
around the critical point. Accordingly, we denote by vSp(m) this ‘effective’ spinodal 
curve which is estimated by the PA. 

Furthermore, we can approximate the z(v, m) = 0 locus, which we denote by vo(m), 
from the smallest positive real pole with positive residue of the PA to the logarithmic 
derivative of the z series for fixed m. This method of determining the phase boundary 
was first successfully applied to the king and Heisenberg models by Baker et a1 (1970) 
and Gaunt and Baker (1970). Then for a continuous transition we should expect to 
obtain a monotonically increasing v,(m) as m increases from zero if the series is long 
enough, while for a discontinuous transition, for m < mo where z(v,  m) = 0 is a straight 
line and within the two-phase region, we should obtain a curve which is basically the 
analytic continuation of vo(m) for m > m, since the zeros of the PA themselves are 
analytic functions of m as long as we handle finite length series. In any case, as m + 0+, 
the dz/dm and r/m series become identical (= x -  ’) and u,(m = 0) is the point where the 
zero-field susceptibility diverges. For a first-order transition, vo(0) may not necessarily 
be the transition temperature (as in the MFA). However, the numerical evidence dis- 
cussed in 0 3 for the two-dimensional case suggests the possibility that v,(O) = 0,. 

We have concentrated most of our attention on the FCC lattice in the belief that FCC 
series are more rapidly converging than for the other cubic lattices, for a given length. 
First we consider the q = 3 FCC lattice. The general trend of the v,(m) and vSp(m) curves, 
obtained by constructing PA to D lg T and D lg(dz/dm) respectively for a given value of 
m, is that as m increases from zero they decrease from the m = 0 value, reaching a 
minimum in v around m - 3 and m - 0.2 for z/m and dz/dm respectively, and then 
start to increase again. There is extremely good convergence between different PA 
around their respective minimum. In figure 2 we sketch this ‘trend’ of the poles by 
taking the average of the values for the [3,2], [4,2], [3,3], [5,2], [4,3] and [3,4] PA. 

c 

V 

Figure 2. Plot of u,(m) and u,,(m) for q = 3 on the FCC lattice. The error bars, shown for a 
few selected points, are determined from a ratio test of the inverse of the appropriate series. 
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A few anomalous poles which have an interfering real pole-zero pair in their neighbour- 
hood are omitted when taking the average. This figure shows striking similarity with 
the MFA for a first-order transition. Now the question is whether these 'bumps' are 
really due to a first-order transition or whether they are just spurious numerical effects 
near the tricritical point due to the shortness of our series. If they are indeed due to a 
first-order transition, we would expect that the minimum of u,,(m) (U - 0.0889 at 
m - 0.21) which supposedly corresponds to the critical point (m,, U,) in figure 1, must 
clearly be lower than u,,(O). Unfortunately, the Pade entries for m = 0 have too many 
anomalies to enable us to reliably estimate u,,(O). 

Our analysis of the x 3  series for the two-dimensional lattices, however, suggests not 
only that the location of the singularity of x 3  is the same as that of x but also that fre- 
quently the PA of D lg x 3  give a better estimate for the known transition temperature 
than x (see for example q = 5 for the SQ lattice). This motivated us to consider the x3 
series together with x .  Table 3 shows the poles and residues of the PA to D lg x 3  together 
with those for x. It is apparent that the results shown in this table enable us to make 
a more confident estimate of the location of the singularity than that of x alone. Also 
shown in table 3 are the poles and residues of the PA to D lg(dz/dm) at m = 0.21. From 
this table one would conclude that dm/dT (m = 0.21) diverges at U - (889 & 2) x 
with an exponent 1.15 while x 3 ,  and hence also x,  diverges at U - (905+ 10) x 
These estimates have to be interpreted within the limitations that the series are not long 
enough to show convergence in the sequences for the [ N ,  N + f  approximants. For 
example, the sequence of poles (multiplied by 10') of the [N, N - 11 approximants are 
for N = 1,2,3 and 4, 12500,9235,9004 and 9036 respectively, for x 3  and 8063, 9603, 
8879 and 8893 respectively, for dm/dr (m = 0.21). The difference between the estimated 
u,,(0.21) and uo(0) is not large enough to conclude absolutely that ~ ~ ~ ( 0 . 2 1 )  c ~ ~ ( 0 ) .  
However, we feel that this is indeed the case in view of the excellent convergence between 
different approximants and hence favour the transition being of first order. Assuming 
that the transition is of first order, the bump in u,(m) can be understood as resulting 
from the analyticity of the poles as a function of m, since by enforcing the analyticity 

Tabie 3. Physical poles (multiplied by 10') and residues of PA to the logarithmic derivative 
of x - ' , ~ ; '  and dr/dm(m = 0.21) series for q = 3 for the FCC lattice. *: see table 2 for 
explanation; a, b,c:  these approximants have a smaller real pole at 8311,17722, 8585, with 
a residue 0.10,0.07,0.26 for a, b, c respectively, immediately followed by a real zero. These 
pole-zero pairs are not close enough to each other to ignore completely as for the other 
starred entries. However, they have too small a residue to be considered as physical. Hence 
we disregard these three entries from further consideration. 

x - '  x i '  dr/dm (m = 0.21) 
PA Pole Residue Pole Residue Pole Residue 

9154' 
9057 
9212' 
9329' 
901 8 
9016 
9068' 
9037 
9052 

0.95 
0.98 
0.89'" 
0.74" 
0.95 
0.95 
0.99' 
0 9 7  
0.98 

9043 2.4 1 
9036 2.39 
9175* 2.45*b 
9023 2.37 
906 1 2.44 
9054 2.43 
9064 2.45 
9004 2.33 
9078 2.47 

8891 
8893 
8892 
8892 
8888 
889 1 
8898 
8879 
8903 

1.15 
1.15 
1.15 
1.15 
1.14 
1.15 
1.15 
1.14 
1.15 
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the straight line portion of the T = 0 curve will turn out to be more or less mean-field-like 
as long as we have finite length series. 

For q = 4 and 5 on the FCC we have results qualitatively similar to that in the q = 3 
case. The minimum of u,,(m) [uo(m)] occurred approximately at m - 0.3 [0.5] and 
0.35[0.6] for q = 4 and 5 respectively, and the poles of the PA to the D lg x and D lg x 3  
which are to be compared with those of dm/dz at m = 0.3[0.35] for q = 4[5] are listed 
in table 4 for the six most significant PA. From this we might take uo = (815 f 10) x 
and ~ ~ ~ ( 0 . 3 )  = (776f 10) x for 4 = 4 and uo = (7551 10) x and 
~~~(0.35) = (682f 10) x for q = 5. Hence we have a much better situation here 
than for the 4 = 3 case and we can more clearly see that uo is higher than the spinodal 
point. Since the MFA is supposedly more meaningful for higher dimensions and higher 
4 (Mittag and Stephen 1974) and since q = 4 is the dividing point between the second- 
and first-order transitions in two dimensions, one would expect that the dividing point 
in three dimensions should be between 2 and 4 and the above analysis suggests that the 
transition is of first order, at least for q 2 3. 

Table 4. Physical poles (multiplied by IO5) of PA to D Ig x.  D Ig x ,  and ds/dm at m = 0.3 
(0.35) for q = 4 (5) for the FCC lattice. The residues of the poles for 1 - l  are given in paren- 
theses. 

q = 4 FCC 

PA X Xa dr/dm (m = 0.3) 

E 2 1  8175 (0.75) 8130 7759 
~ 4 ~ 3 1  8171 (0.74) 8113 7759 
[3,41 8173 (0.75) 8115 7757 
[4,21 8194 (0.77) 8191 7757 
~ 3 ~ 3 1  8187 (0.76) 8145 7768 
r521 8230 (0.79) 8259 7715 

q = 5 FCC 

PA X 1 3  dr/dm (m = 0.35) 

[5,21 7564 (0.64) 7536 6819 
~ 4 ~ 3 1  7563 (0.64) 7536 6820 
13.41 7563 (0.64) 7543 6803 
[4.21 7572 (0.64) 1542 6828 
[3,31 7565 (0.64) 7425 6857 
[3,21 7613 (0.67) 7642 6738 

The sc and BCC series were also investigated in the same way, for q = 3 and 4. 
Although the convergence between different PA was appreciably degraded compared 
to the FCC case, all the general features of the FCC lattice were found. In particular, the 
values of m where the minimum of usp(m) and uo(m) occurred were approximately the 
same as for the FCC lattice for both lattices for given 4.  The locations of u,,(O) = uo and 
usp(m,) were estimated to be : 

uo = (200+2) x 10-3, ~ ~ ~ ( 0 . 2 )  = (196+2)x for 4 = 3 sc 
uo = (1415+ 10) x u,,(0.2) = (i39+ 1) x 10-3 for 4 = 3 BCC 
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uo = (186f3) x ~~~(0.3) = (176k5)x for q = 4 sc 
uo = (1305f15)x ~~~(0.3) = (123 f5) x lo-’ for q = 4 BCC ; 

hence vo > uSp(m,) for all cases. A similar analysis was attempted for both the plane 
square and plane triangular lattices where the answer is known. Unfortunately, due to 
severe numerical uncertainties, no conclusion as to the relative positions of uo and usP(mc) 
could be drawn. 

From the residues for the x series listed in tables 3 and 4 and from the evidence 
shown for the two-dimensional lattices (§3), the asymptotic behaviour of x near the 
transition may be described as 

x - (uo-u)-y(q)  

with 

y(3) = 0.95 f 0.1 

~ ( 4 )  = 0-75fO.1 

y(5) = 0.64fO.1. 

Also, from table 3 we can estimate y 3  for q = 3 to be 2.4 k 0.1. These exponents estimated 
from an eight-term series for the FCC lattice are to be compared with the results 
y(3) = 0.9f0.1 and y3(3) = 2.1f0.2 estimated by Straley (1974) from his nine-term 
series for the sc lattice. 

5. Discussion 

For q = 3 and in two dimensions, the tricritical point discussed here is not the kind 
usually studied. Hence it poses an interesting problem for study by means of the scaling 
hypothesis. In fact Straley (1974) has proposed a form for the singular part of the 
free energy which predicts that a = a’ = 2+3y-2y3 and that y = y; (for the defini- 
tion of y; see Straley and Fisher 1973). It was found by these authors that y’ = 1.5 k0.2, 
y; = 1.1+0-1, a = a’ = 0.05f0.10 and j3 = O.lOkO.01. On the other hand Zwanzig 
and Ramshaw (1973 preprint), on re-analysing the free energy series of Kihara et al(l954) 
by a new method, estimated that a = a’ = 0.286f0.02. Using the values y = 1.42 and 
y3 = 3.00 found in 0 3 and the first relation of Straley, given above, we see that 
a = a’ = 0.26 which is in agreement with the latter work. Furthermore it does not 
contradict the strict thermodynamic inequality a’+ 2/3+y‘ 2 2 which Straley and 
Fisher, using their value of a, found difficulty in satisfying. Moreover, y = y; cannot 
be accepted as true, based on the available data. Hence we feel that more investigation 
regarding this point is necessary. 

and x 3  at the fist-order 
transition point suggests that it is possible that other thermodynamic quantities might 
behave in a similar manner to those near a critical point except for finite discontinuities 
in the first derivatives of the free energy; for example, m - m, + AI T - Tal@ (mo > 0). 
This sort of situation is in fact actually observed in liquid crystals. Stinson and Litster 
(1970) observed a divergence of the magnetic birefringence and a divergence and critical 
slowing down of the fluctuations in the order parameter as the temperature is lowered 
to the fist-order isotropic-to-nematic transition, while the metastable states could not 
be observed. Their data showed that the inverse of the fluctuation in the order, ie the 

Evidence presented above for the divergence of both 
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inverse susceptibility in our language, while obeying the MFA prediction x- = A( T - T,*) 
(Tr being - 1 K higher than To, the transition temperature) accurately for temperatures 
several degrees higher than To, definitely deviates in a downward direction from the 
linear behaviour near To, suggesting the possibility of the vanishing of x - l  at To, ie 
x- '  - ( T -  To)7 as T -, TZ with y < 1. This is in contrast to the usual para- to ferro- 
magnetic transition where x - '  deviates from a linear behaviour so as to give y > 1. It 
would be desirable to have more experimental data in the transition region, but if this 
is indeed the case the Potts model seems to predict these pre-transitional phenomena 
correctly for some appropriate value of q. 

Acknowledgments 

We wish to thank Professor M E Fisher for helpful comments. 

Appendix 

A.I .  CoefJicients of x = q - '( 1 + ZF= a#) series for SQ and TR lattices 

The numbers in parentheses are the values of q. 

SQ(3) sd4)  
4 4 

12 12 
36 36 

112 124 
316 356 
9 52 1164 

2672 3492 
7812 10748 

TR(4) 
6 

30 
162 
846 

4398 
22662 

116430 
596730 

TR(5) 
6 

30 
174 
966 

541 2 
30042 

166956 
928056 

sa51 
4 

12 
36 

136 
396 

1376 
4432 

13980 

TR(6) 
6 

30 
186 

1086 
6498 

38394 
228 174 

1357710 

SQ(6) 
4 

12 
36 

148 
436 

1588 
5492 

17508 

TR(7) 
6 

30 
198 

1206 
7656 

47718 
300804 

1897572 

TR(3) 
6 

30 
150 
726 

3456 
16254 
75876 

351852 

TR(8) 
6 

30 
210 

1326 
8886 

58014 
385566 

2559522 

A.2. CoefJicients of x3 = q- 2(q - 2)(1+ Z,"= b,u") series for the SQ and TR lattices 

The numbers in parentheses are the value of q.  

sa31 sa41 sa51 sq(6) 
bl 12 12 12 12 
b2 72 72 72 72 
b3 348 348 348 348 
b4 1452 1512 1572 1632 
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w(3) w(4) w(5) w(6) 
b5 5652 6060 6468 6876 
b6 20772 23472 26 172 28872 
bl 73560 87036 101352 1 16508 
b8 252588 316488 385284 458976 

N 3 )  
b l  18 
b2 180 
b3 1398 
b4 9 540 
b5 60120 
b6 358728 
bl 2056608 
b8 11434878 

N 4 )  
18 

180 
1446 

10404 
69930 

448668 
2783538 

16830612 

TR(5) 
18 

180 
1494 

1 1268 
80100 

546756 
3625 128 

23512806 

TR(6) 
18 

180 
1542 

12132 
90630 

652992 
4585698 

31594860 

A.3. Polynomials IC/,(m) for q = 3 on the face-centred cubic lattice 

(See equation (14)) 

*o = 1 

$1 = - 12- 12m+24m2 

1 ( / 2  = 12+ 102m-246m2-492m3 +624m4 

t+b3 = - 12-60m+ 1128m2+5736m3-5784m4-16944m5+15936m6 

t+b4 = 24+870m-4338m2-29817m3+27531m4+256746m5 - 113400m6-544464m7 

+ 406848m8 

+ 5  = -156+4164m- 1584m2+80256m3-98916m4-1906188m5- 199656m6 

+9711360m7 - 1198176~1~ - 16790592~1~ + 10399488m" 

$6 = - 1080+ 38490m-91590m2 - 191568m3 +564852m4+8839890m5 +5747394m6 

- 87885756" - 54497352m8 + 330801456m9 + 33351360m'O 

- 502440960m' + 265764864m12 

t+bl = - 13176+316476m-624636m2 +784944m3 -549072m4-32620836m5 

- 30137292m6 + 532745208" + 787809984m8 - 3367464816m9 

- 3474596928m"+ 10506629568m' + 2998609920m'* 

- 1471 1920128m13 +6791030784m14 

$8 = - 149958 + 2826756m -6009762m2 + 3535149m3 + 5629503m4 + 78228720m' 

+ 114601260m6 - 2487973371" - 5552550453d +229311 15888m9 

+ 52070929212m" - 11 1741997584" ' - 165637920240m12 

+ 31 5776346336" + 1448031 33312m14 - 4239 18550272m ' 
+ 173558805504m ". 



904 D Kim and R I Joseph 

References 

Alexander S and Yuval G 1974 J.  Phys. C :  Solid St .  Phys. 7 1609-20 
Amit D J and Shcherbakov A 1974 J.  Phys. C :  Solid St. Phys. 7 L 9 6 8  
Baker Jr G A, Eve J and Rushbrooke G S 1970 Phys. Rev. B 2 70621 
Baker Jr G A, Gilbert H E, Eve J and Rushbrooke G S 1967 Brookhaven National Laboratory Rep. No. 

Baxter R J 1973 J .  Phys. C: Solid S I .  Phys. 6 LA45-8 
Chang T S, Hankey A and Stanley H E 1973 Phys. Rev. B 8 346-64 
Ditzian R V and Oitmaa J 1974 J .  Phys. A: Math., Nucl. Gen. 7 L 6 1 4  
Domb C 1960 Adv. Phys. 9 149-361 
Enting I G 1974 J.  Phys. A: Math., Nucl. Gen. 7 1617 
Gaunt D Sand Baker Jr G A 1970 Phys. Rev. B 1 1184-210 
Golner G R 1973 Phys. Rev. B 8 3419-22 
Griffiths R B and Wheeler J C 1970 Phys. Rev. A 2 104764 
Kihara L, Midzuno Y and Shizume T 1954 J .  Phys. Soc. Japan 9 681-7 
Kim D and Joseph R I 1974a J.  Phys. C:  Solid S I .  Phys. 7 L167-9 
__ 1974b Phys. Lett. A 46 35940 
Mittag L and Stephen M J 1971 J. Math. Phys. 12 44-50 

~ 1974 J .  Phys. A :  Math., Nucl. Gen. 7 L109-12 
Potts R B 1952 Proc. Camb. Phil. Soc. 48 1 0 6 9  
Priest R G 1971 Phys. Rev. Lett. 26 423-5 
Stinson I11 T W and Litster J D 1970 Phys. Rev. Lett. 25 503-6 
Straley J P 1974 J.  Phys. A:  Math., Nucl. Gen. 7 2173-80 
Straley J P and Fisher M E 1973 J.  Phys. A: Math., Nucl. Gen. 6 1310-26 

50053 (T-460) 


